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Abstract: The authors propose an adaptive cell-breathing (ACB) technique to improve the energy efficiency (EE) of a downlink
cellular network consisting of small-cell base stations (BSs), wherein each BS adaptively adjusts its transmission power such
that the received signal strength of the worst-case user is larger than a pre-defined threshold. They also propose an aggressive
BS on–off (ABO) technique in which the small-cell BSs having a number of users smaller than a certain value, Nth, are turned
off, whereas conventional techniques only turn off the empty BSs. They adopt a stochastic geometry for modelling the locations
of both BSs and users. Simulation results show that the ACB technique yields a much better EE than the power on–off
technique with a fixed power, including the ABO technique. In particular, the EE of the ACB technique is proportional to (λb)c

(c > 0), where λb denotes the BS density and the exponent c denotes the increasing ratio of the EE to λb in the log − log domain.
The EE of the ABO technique tends to increase as Nth increases.

1 Introduction
1.1 Motivations

Recently, mobile data traffic has been increased significantly. Next-
generation wireless communication systems, referred to as 5G,
have been investigated in order to support huge traffic demands
[1]. Many wireless technologies such as (heterogeneous) small
cells, massive antennas, coordinated multi-point transmission,
interference management, in-band full-duplex radios, and cognitive
radios, are being considered as candidates for the 5G systems [2].
Among them, the small cells are considered to be one of the most
promising techniques to increase the throughput of the 5G systems
since it has been known that the capacity of cellular networks
linearly increases according to the base station (BS) density if
inter-cell interferences can be properly dealt with [3–5]. The basic
idea of small cells involves deploying BSs close to the users.

Meanwhile, improved energy efficiencies (EEs) have become
desirable with regard to wireless networks due to growing concerns
associated with global warming. In particular, it has been shown
that nearly 60% of the total consumed energy was due to BSs in
cellular networks [6]. Hence, the EE of BSs must be improved to
effectively reduce the power consumption in cellular networks. In
addition, it has been known that there exists a trade-off between
spectral and EE in cellular networks and the trade-off can be
improved via a proper resource allocation [7]. The power
consumption of small cells is in general much lower than that of
the conventional macro cells. However, it is not clear if small cells
result in a higher EE than the conventional macro cells in a
network-wide perspective due to the higher BS density in small-cell
networks.

1.2 Related work

Recently, several studies with regard to the EE of small cells have
been investigated [8–18]. The coverage and EE of small-cell
networks were analysed under a stochastic geometry model in [8],
where the optimal BS density was obtained by taking into account
the network costs, including energy consumption, hardware, and
backhaul cables. Lee and Huang [8] considered the scenario where
each fixed-power BS is turned on unless its cell is empty, i.e. no

active users served by the BS. The EE scaling laws of the downlink
hexagonal cellular networks were analysed according to the radius
of the cell in [9]. It was shown that the EE is proportional to R−α

with proper power control techniques, where R and α denote the
cell radius and the path-loss exponent, respectively. However, in
[9], only the transmission power was considered although
additional power consumption existed at the BSs which may be
even larger than the transmit power in practise.

Furthermore, small cells tend to be deployed in random
locations and, therefore, the stochastic geometry model may be
more appropriate than the hexagonal model. In [10], the network-
wide EE of small-cell networks was analysed according to the BS
density and the number of BS antennas under the stochastic
geometry model, where it was shown that the throughput increases
as the BS density increases, but the EE increases according to the
BS density only when the non-transmission power ratio is low
enough. Three types of BSs (macro, micro, and pico) were
considered for measuring the power consumption, but both
transmission and non-transmission power consumptions for each
type of BS were assumed to be fixed [10].

In other words, transmission power control, sleep mode
operations of the BS, or power on-off techniques were not adopted
to improve the EE. In [11], EE of massive multiple-input multiple-
output (MIMO) systems and smal cell systems are mathematically
analysed and compared under the stochastic geometry model. It
was shown that small cell systems always outperform massive
MIMO systems in the view point of EE. In [12], EE of
heterogeneous networks which consist of femto- and pico-cells was
mathematically analysed under the stochastic geometry model and
the a disjoint channel allocation between femto- and pic-cells was
proposed to maximise EE. Although the performance of macro-cell
was not considered, the interference from macro-cell to those
femto- and pico-cells was taken into account in the analysis.
However, in both [11, 12], the power control of the BSs was not
considered.

In [13], an energy-efficient transmission power control
technique was proposed for small cell networks and the optimal BS
density that maximises the EE was obtained for a given user
density under the stochastic geometry model. The transmission
power of each BS was determined such that the probability that the
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(long-term) received signal power for a particular user, served to
the BS, is smaller than the predesignated minimum power, is less
than a constant. The transmission power of the BS tends to
decrease as the BS density increases, but it is also fixed for a given
BS density. However, in the stochastic geometry model, the cell
shape is very irregular and the resultant outage probability of the
BSs may be very different from each other. Furthermore, in [13],
only in the empty cell, referred to as the void cell, the BS was
turned off, as in [8]. In [14], several sleep modes were proposed for
improving EE of heterogeneous small-cell networks and the
authors validated that their proposed schemes outperform the
conventional random sleeping policy. However, the proposed
sleeping policies in [14] may not feasible in practical networks
because they involve many network parameters and require
iterations. In [15], an optimisation-based resource management
framework was proposed for improving EE of heterogeneous
networks, where cell activation, user association, and spectrum
allocation are simultaneously considered. However, as noted by the
authors of [15], the optimisation-based framework requires that the
central controller knows the traffic intensity of all user groups and
the spectral efficiency of all communication links, which seem to
be impossible in practical cellular networks.

In [16], the authors proposed a joint power control and user
scheduling scheme for ultra-dense small-cell networks where the
locations of small BSs and users are fixed. The proposed approach
is applicable when the number of BSs tends to infinity so that the
interference from other cells can be approximated by mean field.
Different from the above mentioned references, Samarakoon et al.
[16] considered a certain traffic arrival pattern for the users and,
hence, the target of user scheduling is to achieve stable queues but
not the fair resource (or time) sharing among the active users as in
[8–15]. Consequently, their proposed scheme is not applicable for
the systems where the active users are modelled by stochastic
geometry model.

In [17], deploying dense networks was proposed to maximise
EE in uplink networks where the power control of each user is
further considered. The EE performance was analysed under the
stochastic geometry model. Although the power control was
considered in [17], the interference behaviour in uplink is much
different from downlink which is the focus of this paper. In [18],
under the stochastic geometry model of BSs, how to place
additional BSs to improve the system capacity and outage was
investigated when the BSs have fixed transmission power.

1.3 Contributions

In this paper, under the stochastic geometry model of the cell
topology, we propose an adaptive cell-breathing (ACB) technique
in downlink cellular networks in which each BS adaptively adjusts
its transmission power such that the received signal power of the
worst-case user, located in the farthest cell boundary from the BS,
is higher than the pre-defined power. Hence, the minimum signal-
to-noise ratio of all users in the network could always be
guaranteed. It is notable that with ACB, different BSs may set

different transmission power. We further propose an aggressive
power on–off technique with a fixed transmit power, in which the
BS supporting smaller users over a pre-defined threshold could be
turned off in order to improve the EE. Notice that the conventional
power on–off techniques only turn off the BSs in the empty cells.
Previously, there has been several studies on cell breathing for
different purposes [19, 20]. In [19], the authors observed the effect
of cell breathing in cellular networks, where the transmission
power of BSs is adapted to the BS density. However, in the
network scenarios considered in [19], the BSs are deployed in a
regular manner, i.e. hexagonal cell deployment, and all the BSs
share the same transmission power. In [20], load balancing in
wireless local area networks was achieved through cell breathing
where the transmission power of beacon is adapted to the user
density in each cell while the transmission power of data packets is
still fixed to achieve the high data rate.

1.4 Organisation

The remaining of this paper is organised as follows. The system
model is described in Section 2. Section 3 presents the two
proposed techniques: ACB technique and aggressive BS on–off
(ABO) technique. Section 4 shows the numerical results. Finally,
Section 5 concludes the paper.

2 System model
We consider a downlink cellular network in which BSs and users
are spatially distributed according to two independent
homogeneous Poisson point processes (PPPs). All the BSs and
users are assumed to be equipped with a single antenna. Each user
is assumed to be associated with the nearest BS, which is also
called user-centric cell association [21]. The resulting network
structure is known as a Voronoi tessellation. Since the user
association is based on the user locations, it only depends on the
large-scale fading of the users. If multiple users are located within
a cell, they are served fairly with a round-robin scheduler. Fig. 1
illustrates an example of the Voronoi cell structure. It is observed
that the size and shape change dynamically over different cells. 

Let λb and λu represent the density values of the BSs and users,
respectively. Then, the probability that m users exist in a certain
area S is given by

ℙu(m) = (λuS)m

m! e−λuS, (1)

which is a well-known Poisson distribution. Thus, the number of
users within a cell tends to change when the size of the (Voronoi)
cell changes. Moreover, according to PPP, the locations of the users
are uniformly distributed in the area S. In practise, there may exist
users' movement as well as different traffic patterns of the users.
Those phenomenon can be abstractly reflected by varying the
number of active users in a certain area over time. As one
candidate mathematical model, PPP for the number of active users
is considered in this paper. Note that the proposed algorithm is
assumed to be updated periodically in order to sufficiently capture
the dynamics of networks such as users' movement and traffic
patterns. Similarly, the number of BSs also follows a Poisson
distribution and the probability that there are m BSs within a
certain area S is given by

ℙb(m) = (λbS)m

m! e−λbS . (2)

With user-centric cell-association, the area distribution of each
Voronoi cell S is approximated as a Gamma distribution with a
shape parameter 3.5 and a mean of 1/λb [22], which is expressed as

f S(s) ≃ 3.53.5

Γ(3.5)λb
3.5s2.5 e−3.5λbs, (3)

where Γ( ⋅ ) denotes the Gamma function,

Fig. 1  Example of the Voronoi cell structure when λb = λu
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Γ(x) = ∫
0

∞
tx − 1 e−t dt . (4)

The probability that no users exist in a particular cell, also
referred to as void-cell probability or empty-cell probability, is
given by

ℙempty = ∫
0

∞
e−λux f S(s) ds ≃ 1 + λu

3.5λb

−3.5

. (5)

The BS of an empty cell is often assumed to operate in sleep mode
to reduce the power consumption and interference toward other
cells [23].

In this paper, we consider a well-known power consumption
model of the BS, which is widely adopted in the literature and by
standard organisations [10]:

PBS = 1
ηPt + Pc + P0, (6)

where η, Pt, Pc, and P0 denote the power amplifier efficiency,
transmission power, circuit power required for RF chain operations
(including base-band processing), and non-transmission power
consumption, respectively. Reports on the practical power
consumption suggested that the Pc is approximated as being
linearly proportional to Pt, and thus we assume that the Pc = βPt
(β > 1). P0 may include the power consumption from cooling and
power supply losses which is required regardless of data
transmission. P0 tends to become reduced as the cell-size decreases
[24]. Furthermore, if BS on–off techniques are applied and a cell is
turned off (or operating during sleep mode), then only P0 may be
needed in (6).

Pt, i denotes the transmission power of the ith BS in the network.
The received signal-to-interference and noise ratio at an arbitrary
user 0, which is served by BS 0, is given by

γ0 = g00d00
−αLPt, 0

∑i ≠ 0 gi0di0
−αLPt, i + N0B

, (7)

where L denotes the path-loss at a reference distance (1 m  ) [9], di0
denotes the distance between user 0 and BS i, α denotes the path-
loss exponent, and gi j denotes the (Rayleigh fading) channel gain
between BS i and user j. gi j is assumed to be identically and
independently distributed over i and j and to have a unit mean. N0
and B denote the noise spectral density at the receiver and the
channel bandwidth, respectively. The achievable rate of user 0 is
given by

R0 = Blog2(1 + γ0) . (8)

Then, the area throughput is defined as

Tarea = λb(1 − ℙempty)E[R], (9)

where E[R] is the average throughput of an arbitrary cell

E[R] = ∫
0

∞
Blog2(1 + γ) f γ0(γ) dγ, (10)

where f γ0(γ) is the probability density function (PDF) of γ0 and is
obtained by considering the spatial distribution of the BSs and
channel gain. Unfortunately, the PDF does not have a
mathematically tractable form in general. The area power
consumption is defined as

Parea = λb (1 − ℙempty)
1
ηPt + Pc + P0 . (11)

Finally, the network EE is defined as

ηEE = Tarea
Parea

. (12)

3 Proposed power management techniques
3.1 ACB technique

In this subsection, the overall process of the proposed ACB
technique is presented. First, each BS exchanges its location
information such as GPS information with neighbouring BSs.
Then, each BS computes the distance from itself to the farthest cell
boundary. di

max denotes the distance from the farthest cell boundary
to the ith BS. Each cell may have a significantly different di

max due
to the random shapes of the (Voronoi) cell. Users are associated
with the nearest BS and if no users exist within a cell, the
corresponding BS is turned off. The transmission power of the ith
BS is adjusted to satisfy the minimum required signal power of the
worst-case user who is assumed to be located di

max away from the
BS. Pmin denotes the minimum required average signal power at the
users. Pmin depends on the target service provided over the network
and is assumed to be identical over the cells. Then, the
transmission power of the ith BS for the ACB technique should be
adapted as

Pt, i
ACB = min Pmin(di

max)α

L , Pt
max , (13)

where Pt
max denotes the practical transmission power limit at the

BS. The small-scale (Rayleigh) channel gain is ignored since it has
a unit gain on the average sense in general. As each BS adapts its
transmission power to maintain the average minimum required
power at the farthest cell boundary, the transmission power is
independent of the types of the small-scale fading (e.g. Rayleigh,
Nakagami-m etc). Note that (13) is obtained in a distributed
manner at each BS and thus additional information exchange is not
required for the BSs. Additionally, if Pt

max is large enough, the
proposed ACB technique can always satisfy the minimum required
signal power at the users by adjusting the transmission power
according to di

max for each cell. However, [13] satisfies the
minimum signal-power condition with a probabilistic manner
because it sets the transmission power of the BSs to a fixed value
for all cells.

3.2 ABO technique

In this subsection, instead of adjusting the transmission power
according to each cell size as ACB, we propose another power
management technique which aggressively turns off the BS power
to save energy when the number of users is small and, hence,
improves the EE. In the proposed ABOtechnique, cells having the
number of users smaller than a predefined threshold Nth are turned-
off. The number of users belonging to the ith cell is denoted as Ni.
Then, the ith BS is turned-off if Ni ≤ Nth. Therefore, ABO can be
considered as the generalisation of the existing BS on–off
techniques in which only empty BSs are turned-off. With the
proposed ABO, if a BS is turned-off, the corresponding users are
assumed to wait until the BS is turned-on again and to be served
later. Although the transmission power of the BSs is constant as
Pt

max with ABO, turning off the BS power more aggressively can
firstly saves energy consumption and, then, reduces the inter-cell
interference which may improve the spectral efficiency of the other
cells. With the proposed ABO technique under the threshold Nth,
the probability that a cell BS is turned-off is approximated by
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ℙoff(Nth) = ∫
0

∞
∑
i = 0

Nth (λus)i

i! e−λus f S(s) ds

= ∑
i = 0

Nth λu
i

i!∫0

∞
si e−λus f S(s) ds

≃ ∑
i = 0

Nth λu
i

i!∫0

∞
si e−λus (3.5λb)3.5

Γ(3.5) s2.5 e−3.5λbs ds

= ∑
i = 0

Nth λu
i

i!
(3.5λb)3.5

Γ(3.5) ∫
0

∞
si + 2.5 e−(λu + 3.5λb)s ds

= ∑
i = 0

Nth Γ(i + 3.5)
i!Γ(3.5)

λu
i (3.5λb)3.5

(λu + 3.5λb)i + 3.5

= 1 + λu
3.5λb

−3.5

∑
i = 0

Nth Γ(i + 3.5)
i!Γ(3.5) 1 + 3.5λb

λu

−i
,

(14)

where the approximation in the third line is obtained from (3) and
the fifth line is obtained by replacing t = (λu + 3.5λb)s and applying
the definition of Gamma function shown in (4). As (6) depends
only on the density parameters λb and λu, (14) does not depend on
the type of small-scale fading as well.

4 Numerical results
In this section, extensive simulations are performed to validate the
performance of the proposed power management techniques. The
system parameters considered in the simulations are summarised in
Table 1. For the channel model, according to [9] we set the channel
bandwidth as 10 MHz, the path-loss at 1 m as 1.425 × 10−4, the
path-loss exponent α as 3.5 and the noise spectral density N0 as
3.98 × 10−21 Watt/Hz (i.e. −174 dBm/Hz). According to [24], the
maximum transmission power of macro BS, micro BS, and pico
BS are equal to 20, 6.3, and 0.13 W, respectively. In this paper, we
show the performance tendency of the proposed algorithms for
varying densities of BS. From Figs. 2–5, the horizontal axis ranges
from 4 to 4 × 104 BS/km2, which implies the cell radius of the BS
ranges from 10 to 300 m. Considering the cell radius, the
simulation environment covers from pico-cell to micro-cell
environments. Thus, we set the maximum transmission power to be
3 W, which is larger than 0.13 W and is smaller than 6.3 W. Under
the channel model shown in Table 1, if Pt

max is set to 3 W, the
received power at 300 m away from the BS is 10−12 W, which is set
to the reference for Pmin in this paper. The non-transmission power
P0 of 4.3 W, the circuit power constant β of 4, and the power
amplifier efficiency η of 0.32 are set based on [10, 24]. In this
paper, we only consider Rayleigh fading as a small-scale fading
since Rayleigh distribution has been considered as a representative
small-scale fading distribution. As noted before, the proposed
techniques can be extended to other small-scale fading models with
Nakagami-m and Rician distributions, because they are designed
only with large-scale fading effects.

Fig. 2 reveals the area throughput normalised to the bandwidth
of the proposed ACB and ABO techniques over a varied the BS

density λb when the user density λu = 100 3800 users/km2. In this
figure, it is assumed that P0 = 0, implying that the ideal operation
of the turned-off BS and conventional BS on–off techniques are a
special case of the proposed ABO technique with Nth = 0. For
ACB and ABO with Nth = 0, the normalised area throughput
increases as λb increases since the distance between users and their
serving BSs become smaller as λb increases. On the other hand, for
ABO with Nth = 2, the normalised area throughput increases
within the low BS density regime but it decreases in the high BS
density regime. In the case of a high BS density, many small BSs
are turned-off and the corresponding users are assumed to be
served some other time; thus, the spatial reuse effect from dense
BSs becomes weakened. The throughput decreases as Nth increases
with the ABO technique. Note that the ACB technique outperforms
the ABO regardless of BS density for the same user density.

Fig. 3 presents the EE of the proposed ACB and ABO
techniques under the same simulation parameters as shown in Fig.
2. The EE of both the ACB and ABO techniques increases as λb
increases. However, the ACB technique significantly outperforms
the ABO technique. For example, the EE of the ACB technique is
nearly 1000 times higher than that of the ABO technique with
Nth = 0 when λb = 1000 and λu = 100. One interesting
phenomenon is that ACB yields a nearly linear increment on the
EE according to the BS density in the log − log domain, implying
that the EE of the ACB technique is proportional to (λb)c (c > 0)
where c denotes the increasing ratio of the EE to the BS density in
the log − log domain, i.e. the slope of the ACB curves shown in
Fig. 3. The EE of the ABO technique increases as the Nth increases

Table 1 System parameters
channel bandwidth 10 MHz

path loss at 1 m 1.425 × 10−4

path-loss exponent α 3.5
N0 3.98 × 10−21 W/Hz
Pt

max 3 W

Pmin 10−12 W
non-transmission power P0 0 or 4.3 W
circuit power constant β 4
power amplifier efficiency η 0.32
small-scale channel Rayleigh
 

Fig. 2  Normalised area throughput versus BS density with a fixed λu

 

Fig. 3  EE versus BS density with a fixed λu
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even though the improvement is marginal, compared with the ACB
technique.

In Figs. 2 and 3, the user density is assumed to be fixed;
however, the densities of the BSs and users may be correlated
highly in practise. Fig. 4 presents the EE for a varied λb while λu is
linearly proportional to λb. The EE of the ACB technique increases
linearly as the BS density increases and the effect of user density is
negligible with the ACB technique. The EE of the ABO technique
also increases, although the slope is quite small. The EE is
improved as Nth increases especially in the case of a low user
density.

In the previous figures, it is assumed that P0 = 0 since the
power consumption in sleep mode is expected to be significantly
reduced with advanced power management techniques especially
for small cell BSs. However, in practise, P0 can not be neglected.
Thus, in Fig. 5, the EE of the proposed techniques with a non-zero
P0 is shown. In this simulation, it is assumed that P0 = 4.3 W Note
that P0 of this paper is equal to Psleep of [24]. The definition of P0 in
[24] is the minimum non-zero (RF) output power that indicates the
minimum consumed power when the BS is transmitting data, while
Psleep in [24] denotes the sleep mode power consumption. Thus,
Psleep in [24] has a similar meaning to P0 in the power consumption
model of this paper which is a typical value for pico-cell BSs [24].
In this case, the ACB technique still yields a much better EE than
that of the ABO technique. In particular, the EE of the ACB
technique with a higher user density outperforms it with a lower
user density, while the effect of user density on the EE of the ACB
technique is negligible when P0 = 0.

5 Conclusion

In this study, two power management techniques to improve the EE
of ultra-dense small-cell networks were considered: ACB and
ABO. In the ACB algorithm, the BS is turned-off only when there
exist no users within its coverage and it always guarantees a certain
signal strength at all users within its coverage by adjusting its
transmission power dynamically. Thus, the ACB is more
appropriate for the traffic requiring a strict quality-of-service.
However, in the ABO algorithm, the BS may be turned off if the
number of users within a cell is smaller than a certain value and it
does not adjust its transmission power. Thus, the ABO is more
appropriate for the best-effort, while the ABO algorithm can
operate with significantly smaller complexity than the ACB
algorithm. There exists a trade-off between two proposed
algorithms. It was shown through extensive simulations that the
proposed algorithms can improve the EE of the small cell
networks. In particular, the ACB achieves a linear increment on the
EE according to the BS density in the log − log domain. For the
future work, we need to further investigate the EE of the
heterogeneous networks in which the macro- and micro-cells
coexist.
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